Derivation of a new formula for calculating urinary electrolyte-free water clearance based on the Edelman equation.
نویسندگان
چکیده
In evaluating the renal mechanisms responsible for the generation of the dysnatremias, an analysis of free water clearance (FWC) and electrolyte-free water clearance (EFWC) is often utilized to characterize the rate of urinary free water excretion in these disorders. Previous analyses of FWC and EFWC have failed to consider the relationship among plasma water Na(+) concentration ([Na(+)](pw)), total exchangeable Na(+) (Na(e)), total exchangeable K(+) (K(e)), and total body water (TBW); (Edelman IS, Leibman J, O'Meara MP, and Birkenfeld LW. J Clin Invest 37: 1236-1256, 1958). In their derivations, the classic FWC and EFWC formulas fail to consider the quantitative and physiological significance of the slope and y-intercept in this equation. Consequently, previous EFWC formulas incorrectly assume that urine is isonatric when [Na(+) + K(+)](urine) = [Na(+)](p) or [Na(+) + K(+)](urine) = [Na(+)](p) + [K(+)](p) (where [Na(+)](p) and [K(+)](p) represent plasma Na(+) and K(+) concentrations, respectively). Moreover, previous formulas cannot be utilized in the setting of hyperglycemia. In this article, we have derived a new formula termed modified electrolyte-free water clearance (MEFWC) for determining the electrolyte-free water clearance, taking into consideration the empirical relationship between the [Na(+)](pw) and Na(e), K(e), and TBW: MEFWC = V [1 - 1.03[Na(+) + K(+)](urine)/([Na(+)](p) + 23.8)]. MEFWC, unlike previous formulas, is derived based on the requirement of the Edelman equation that urine is isonatric only when [Na(+) + K(+)](urine) = (Na(e) + K(e))/TBW = 0.97[Na(+)](p) + 23.1. Furthermore, since we have shown that the y-intercept in the Edelman equation varies directly with the plasma glucose concentration, in patients with hyperglycemia, MEFWC = V [1 - 1.03[Na(+) + K(+)](urine)/{[Na(+)](p) + 23.8 + (1.6/100)([glucose](p) - 120)}]. The MEFWC formula will be especially useful in assessing the renal contribution to the generation of the dysnatremias.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY Derivation of a new formula for calculating urinary electrolyte-free water clearance based on the Edelman equation
Nguyen, Minhtri K., and Ira Kurtz. Derivation of a new formula for calculating urinary electrolyte-free water clearance based on the Edelman equation. Am J Physiol Renal Physiol 288: F1–F7, 2005; doi:10.1152/ajprenal.00259.2004.—In evaluating the renal mechanisms responsible for the generation of the dysnatremias, an analysis of free water clearance (FWC) and electrolyte-free water clearance (E...
متن کاملModeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model
A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction ...
متن کاملPrediction of Hydrate Formation for the Systems Containing Single and Mixed Electrolyte Solutions
In this work the effect of electrolytes on hydrate formation was investigated. To do so, a new model was used in predicting the hydrate formation conditions in presence of both single and mixed electrolyte solutions. The new model is based on the van der Waals - Platteeuw hydrate equation of state. In order to evaluate the values for the activity of water in electrolyte solutions t...
متن کاملEvolving concepts in the quantitative analysis of the determinants of the plasma water sodium concentration and the pathophysiology and treatment of the dysnatremias.
The physiologic and clinical implications of the empirical formula originally discovered by Edelman et al [J Clin Invest 37:1236-1256, 1958] relating the plasma water sodium concentration ([Na(+)](pw)) to the total exchangeable sodium (Na(e)), total exchangeable potassium (K(e)), and total body water (TBW) have recently been elucidated. It is quite remarkable that the full significance of the E...
متن کاملSimulation and Derivation of Deflection Equation for Suspended Diaphragm for MEMS Application Using Kirchhoff-Love Theory
In this paper, using theory of sheets, the deflection of suspended diaphragm has been obtained under uniform and circular loading. This type of diaphragm, unlike other diaphragms, has a central support which is recommended to be used in MEMS applications. The relationship between diaphragm deflection and static analysis of this diaphragm enjoys a great significance in investigating and understa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 288 1 شماره
صفحات -
تاریخ انتشار 2005